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Introduction. Recent correspondence with Ahmed Sebbar concerning the theory
of unimodular 3 × 3 circulant matrices1

det




x y z
z x y
y z x



 = x3 + y3 + z3 − 3xyz = 1

brought to my attention a surface Σ in R3 which, I was informed, is encountered
in work of H. Jonas (1915, 1921) and, because of its form when plotted, is known
as “Jonas’ hexenhut” (witch’s hat). I was led by Google from “hexenhut” to
a monograph Bäcklund and Darboux Transformations: Geometry and Modern
Applications in Soliton Theory, by C. Rogers & W. K. Schief (2002). These are
subjects in which I have had longstanding interest, but which I have not thought
about for many years. I am inspired by those authors’ splendid book to revisit
this subject area. In part one I assemble the tools that play essential roles in
the theory of surfaces in R3, and in part two use those tools to develop the
properties of some specific surfaces—particularly the pseudosphere, because it
was the cradle in which was born the sine-Gordon equation, which a century
later became central to the physical theory of solitons.2

part one

Concepts & Tools Essential to the Theory of Surfaces in 3-Space

Fundamental forms. Relative to a Cartesian frame in R3, surfaces Σ can be
described implicitly

f(x, y, z) = 0

but for the purposes of differential geometry must be described parametrically

rrr(u, v) =




x(u, v)
y(u, v)
z(u, v)





1 See “Simplest generalization of Pell’s Problem,” (September, 2015).
2 That story is summarized in a companion essay, “Some remarks concerning

the sine-Gordon equation,” (November, 2015).
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Tangent to Σ at the (non-singular) generic point rrr are the vectors rrru and rrrv,
which are, in general, neither normalized nor orthogonal, but which will be
assumed to be not parallel.

The local metric structure of Σ is indicated by
ds2 = drrr ···drrr = (rrrudu + rrrvdv)···(rrrudu + rrrvdv)

= rrru···rrrududu + 2rrru···rrrvdudv + rrrv···rrrvdvdv

≡ E(u, v)du2 + 2F (u, v)dudv + G(u, v)dv2 (1)
= gij(u, v)duiduj : here u1 = u, u2 = v

where
G(u, v) =

(
g11 g12

g21 g22

)
=

(
E F
F G

)

is the familiar metric tensor. Equation (1) is known as the 1st fundamental
form.

The unit vector
NNN = rrru× rrrv

|rrru× rrrv|
= rrru× rrrv

rurv sin ω

is normal to both rrru and rrrv, and therefore stands normal to Σ at rrr. Differential
variation of NNN

dNNN = NNNudu + NNNvdv

provides indication of the local curvature of Σ. That information is folded into
the structure of the 2nd fundamental form

−drrr ···dNNN = −
{
rrru···NNNududu + (rrru ···NNNv + rrrv ···NNNu)dudv + rrrv···NNNvdvdv

}

which by arguments of the form
(rrrp···NNN)q = 0q = rrrp···NNNq + rrrpq···NNN =⇒ −rrrp···NNNq = rrrpq···NNN

can be written
−drrr ···dNNN = rrruu ···NNNdu2 + 2rrruv ···NNNdudv + rrrvv ···NNNdv2

≡ e(u, v)du2 + 2f(u, v)dudv + g(u, v)dv2 (2)
= hij(u, v)duiduj

with
H(u, v) =

(
h11 h12

h21 h22

)
=

(
e f
f g

)

From ds2 > 0 it follows that the metric matrix G must be positive-definite
(both eigenvalues positive, their product det G > 0). No such condition pertains,
however, to H, the determinant of which can be positive at some points P on
Σ, vanish or be negative at other points. We shall, in fact, have special interest
in “hyperbolic” surfaces, on which at all points det H < 0.3

3 It is unfortunate that tradition has assigned roles to the symbols G and g
to which the conventions of Riemannian geometry have assigned other roles;
we are thus precluded from writing (for example) g = det G. I will depart only
occasionally from tradition, and endeavor always to minimize the possibility of
confusion.
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G conveys information that is locally intrinsic to the surface. Not so H,
which by its NNN -dependence is rendered extrinsic.

The Gauss equations. These present rrruu, rrruv and rrrvv as linear combinations of
{rrru, rrrv,NNN}. They can be produced as corollaries of the following

lemma: Let {aaa, bbb, ccc}—linearly independent, but subject to no additional
restrictions—comprise an arbitrary basis in 3-space, and let the arbitrary vector
xxx be developed

xxx = αaaa + βbbb + γ ccc

Then 


aaa···aaa aaa···bbb aaa···ccc
bbb···aaa bbb···bbb bbb···ccc
ccc···aaa ccc···bbb ccc···ccc








α
β
γ



 =




aaa···xxx
bbb···xxx
ccc···xxx





which if ccc is a unit vector normal to both aaa and bbb becomes



aaa···aaa aaa···bbb 0
bbb···aaa bbb···bbb 0
0 0 1








α
β
γ



 =




aaa···xxx
bbb···xxx
ccc···xxx





giving 


α
β
γ



 = 1
D




bbb···bbb −aaa···bbb 0
−aaa···bbb aaa···aaa 0

0 0 D








aaa···xxx
bbb···xxx
ccc···xxx





where
D = (aaa···aaa)(bbb···bbb) − (aaa···bbb)2 = det

(
aaa···aaa aaa···bbb
aaa···bbb bbb···bbb

)

We therefore have

xxx = D –1
[
(bbb···bbb)(aaa···xxx) − (aaa···bbb)(bbb···xxx)

]
aaa

+ D –1
[
(aaa···aaa)(bbb···xxx) − (aaa···bbb)(aaa···xxx)

]
bbb + (ccc···xxx)ccc (3)

Now set aaa → rrru, bbb → rrrv, ccc → NNN and look to the case xxx → rrruu. We then have

D = det
(

g11 g12

g21 g22

)
, which at risk of confusion will be denoted g

rrruu = g–1
[
g22(rrru ···rrruu) − g12(rrrv ···rrruu)

]
rrru + g–1

[
g11(rrrv ···rrruu) − g12(rrru ···rrruu)

]
rrrv

+ (NNN ···rrruu)NNN

which by (
g11 g12

g21 g22

)
= g–1

(
g22 −g21

−g12 g11

)

becomes

rrruu =
[
g11(rrru ···rrruu) + g12(rrrv ···rrruu)

]
rrru +

[
g22(rrrv ···rrruu) + g21(rrru ···rrruu)

]
rrrv + eNNN
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But
(rrru ···rrruu) = 1

2 (rrru ···rrru)u = 1
2g11,1

(rrrv ···rrruu) = (rrru ···rrrv)u − 1
2 (rrru ···rrru)v = g12,1 − 1

2g11,2

(rrru ···rrruv) = 1
2 (rrru ···rrru)v = 1

2g11,2

(rrrv ···rrruv) = 1
2 (rrrv ···rrrv)u = 1

2g22,1

(rrru ···rrrvv) = (rrru ···rrrv)v − 1
2 (rrrv ···rrrv)u = g12,2 − 1

2g22,1

(rrrv ···rrrvv) = 1
2 (rrrv ···rrrv)v = 1

2g22,2

so we have

rrruu =
[

1
2g11g11,1 + g12g12,1 − 1

2g12g11,2

]
rrru

+
[

1
2g21g11,1 + g22g12,1 − 1

2g22g11,2

]
rrrv + eNNN

From the definition of the Christoffel symbols

Γ i
jk = 1

2gim
(
gjm,k + gkm,j − gjk,m

)

we have
Γ 1

11 = 1
2g11g11,1 + g12g12,1 − 1

2g12g11,2

Γ 2
11 = 1

2g21g11,1 + g22g12,1 − 1
2g22g11,2

so by this and similar arguments we arrive finally at the gauss equations4

rrr11 = Γ 1
11rrr1 + Γ 2

11rrr2 + eNNN

rrr12 = Γ 1
12rrr1 + Γ 2

12rrr2 + f NNN

rrr22 = Γ 1
22rrr1 + Γ 2

22rrr2 + gNNN





(4.1)

The subscripted notation tends to obscure what has here been accomplished; it
is perhaps more vividly informative to write

rrruu = Γ 1
11rrru + Γ 2

11rrrv + eNNN

rrruv = Γ 1
12rrru + Γ 2

12rrrv + f NNN

rrrvv = Γ 1
22rrru + Γ 2

22rrrv + gNNN





(4.2)

The Gauss equations are linear, and—because they involve NNN—extrinsic.

In the next section we proceed from the lemma, by a similar argument, to
a pair of equations that were introduced in 1861 by J. Weingarten (1836–1910).

4 The occurance of Christoffel symbols in these equations is a bit of an
anachronism, since it was mainly during the years 1820–1830 that Gauss
(1777–1855) concerned himself with differential geometry, and he had been
dead for fourteen years by the time Elwin Christoffel (1829 –1900) introduced
the symbols that bear his name.
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The Weingarten equations. These develop NNNu and NNNv as linear combinations
ofe rrru and rrrv. We expect such formulae to exist, since the unit vector NNN stands
normal to Σ at rrr, and (by differentiation of NNN ···NNN = 1) NNNu···NNN = NNNv···NNN = 0 so
NNNu and NNNv lie in the plane tangent to Σ at rrr, which is spanned by {rrru, rrrv}. To
construct such formulae we return to (3), set aaa → rrru, bbb → rrrv, ccc → NNN as before
but this time look to the cases xxx → NNNu else NNNv. We then have

NNNu = g–1
[
g22(rrru ···NNNu) − g12(rrrv ···NNNu)

]
rrru + g–1

[
g11(rrrv ···NNNu) − g12(rrru ···NNNu)

]
rrrv

+ (NNN ···NNNu)NNN

NNNv = g–1
[
g22(rrru ···NNNv) − g12(rrrv ···NNNv)

]
rrru + g–1

[
g11(rrrv ···NNNv) − g12(rrru ···NNNv)

]
rrrv

+ (NNN ···NNNv)NNN

which by
(

g11 g12

g21 g22

)
=

(
E F
F G

)
,

(
rrru ···NNNu rrru ···NNNv

rrrv ···NNNu rrrv ···NNNv

)
=

(
−e −f
−f −g

)

g–1 = (EG − F 2)–1 and NNNu···NNN = NNNv···NNN = 0 give

NNNu = fF − eG
EG − F 2

rrru + eF − fE
EG − F 2

rrrv

NNNv = gF − fG
EG − F 2

rrru + fF − gE
EG − F 2

rrrv





(5)

which are the (extrinsic linear) weingarten equations.

The Mainardi-Codazzi equations. From the requirement that the first pair of
Gauss equations (4.2) conform, as a “compatability condition,” to the identity
(rrruu)v = (rrruv)u we have

(Γ 1
11)vrrru + Γ 1

11rrruv + (Γ 2
11)vrrrv + Γ 2

11rrrvv + ev NNN + eNNNv

= (Γ 1
12)urrru + Γ 1

12rrruu + (Γ 2
12)urrrv + Γ 2

12rrruv + fuNNN + f NNNu

which when dotted into NNN becomes

Γ 1
11f + Γ 2

11g + ev = Γ 1
12e + Γ 2

12f + fu

or
ev − fu = eΓ 1

12 + f(Γ 2
12 − Γ 1

11) − gΓ 2
11

fv − gu = eΓ 1
22 + f(Γ 2

22 − Γ 1
12) − gΓ 2

12

}
(6)

where the second of these mainardi-codazzi equations was derived by a
similar argument from the second pair of Gauss equations by (rrruv)v = (rrrvv)u.
These equations, sometimes called “Gauss-Codazzi equations,” were discovered
in 1856 by Gaspare Mainardi (1800–1879), and independently in 1868 by Delfino
Codazzi (1824–1873), but first appear in the dissertation(1853) of Karl Peterson.
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The Mainardi-Codazzi equations—corollaries by a compatability condition
of the Gauss equations—describe a fundamental relation between the
components of the 2nd fundamental form and their derivatives. Pierre Bonnet
(1819–1892) showed that surfaces that satisfy the same Mainardi-Codazzi
equations can be made to coincide by a Euclidean transformation (translation
+ rotation). The equations are therefore central to the theory of embedded
surfaces.

The shape operator. The Weingarten equations (5), which describe a linear
transformation (“Weingarten map”)

{rrru, rrrv} → {NNNu,NNNv}

on the tangent plane at rrr, can be written
(

NNNu

NNNv

)
= − 1

EG − F 2

(
eG − fF fE − eF
fG − gF gE − fF

) (
rrru

rrrv

)

≡ −S
(

rrru

rrrv

)
(7)

where S—assembled from the components of the 1st and 2nd fundamental forms
—is the shape operator, an object introduced by the (Nazi) mathematician
Wilhelm Blaschke (1885–1962) and not mentioned by Rogers & Schief, but to
which an entire chapter is devoted in Barrett O’Neill’s Elementary Differential
Geometry (1966, revised 2nd edition 2006), which I learned about from the
“Differential geometry of surfaces” article in Wikipedia and which is now
avaiable on the web as a free download.

The shape operator gains interest partly from the fact that its eigenvalues
are the principal curvatures {κ1, κ2} of Σ at rrr ; Mathematica supplies

det S = eg − f2

EG − F 2
=

{
product of eigenvalues
product of principal curvatures

= Gaussian curvature K ≡ κ1·κ2 (8.1)

1
2 trS = gE − 2fF + eG

EG − F 2
=

{
average of eigenvalues
average of principal curvatures

= mean curvature Km = 1
2 (κ1 + κ2) (8.2)

Inversely
κ1

κ2

}
= Km ±

√
K2

m − K (9)

Curvature. At (8) I imported a pair of Gauss’ classic results. The theory of the
curvature of curves and surfaces is a sprawling subject that can be approached
in a great many ways and with various degrees of abstract formality. My limited
intent in the informal remarks which follow will be to assemble (and to attempt
to place in context) only the results of which I will have specific need.
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To begin at the beginning: Look to the graph of y(x), viewed as a curve C
on the Euclidean plane R2. From F. L. Griffin I learned more than six decades
ago that the curvature of C at x is defined5

κ(x) = derivative of local slope with respect to arc length
= dτ

ds : τ = slope = arctan dy
dx

= dτ
dx · dx

ds

=
[
1 +

( dy
dx

)2]–1 d2y
dx2 ·

(
ds
dx

)
–1

=
d2y
dx2

[
1 +

( dy
dx

)2] 3
2

by ds =
[
1 +

( dy
dx

)2] 1
2 dx (9.1)

Suppose now that C has been described parametrically:

rrr(u) =
(

x(u)
y(u)

)

Then
dy
dx

= y ′

x ′ where ′ signifies differentiation with respect to u

d2y
dx2

= du
dx

· d
du

(y ′/x ′)

= 1
x ′ ·

x ′y ′′ − y ′x ′′

x ′x ′

which by (9.1) give

κ(u) = x ′y ′′ − y ′x ′′

[x ′2 + y ′2] 3
2

= 1
[x ′2 + y ′2] 3

2
det

(
x ′ x ′′

y ′ y ′′

)
(9.2)

Introduce

ttt = 1
[x ′2 + y ′2] 1

2
rrr ′ : unit tangent vector at rrr

nnn = 1
[x ′2 + y ′2] 1

2

(
0 −1
1 0

)
rrr ′ : unit vector ⊥ ttt

We then have rrr ′′ = αttt + βnnn with

α = ttt···rrr ′′ = x ′x ′′ + y ′y ′′

[x ′2 + y ′2] 1
2

β = nnn···rrr ′′ = x ′y ′′ − y ′x ′′

[x ′2 + y ′2] 1
2

so by (9.2)

κ(u) = 1
[x ′2 + y ′2]

β = 1
[x ′2 + y ′2]

(magnitude of the nnn -component of rrr ′′ )

5 Mathematical Analysis: Higher Course (1927), page 422.
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Argued another way, we by ttt···ttt = 1 have ttt···ttt ′ = 0 =⇒ ttt ′ ∼ nnn . And by quick
calculation

ttt ′ = 1
[x ′2 + y ′2] 3

2

[
− (x ′x ′′ + y ′y ′′)

(
x ′

y ′

)
+ (x ′2 + y ′2)

(
x ′′

y ′′

) ]

= x ′y ′′ − y ′x ′′

[x ′2 + y ′2]

[
1

[x ′2 + y ′2] 1
2

] (
−y ′

+x ′

)

= x ′y ′′ − y ′x ′′

[x ′2 + y ′2]
nnn

=
√

x ′2 + y ′2 κ(u)nnn

If the parameter u is taken to be arc length s then by ds2 = dx2 + dy2 we have√
x ′2 + y ′2 = 1 and the preceding equation assumes the simple form

d
dsttt(s) = κ(s) nnn(s) = κ(s)

(
0 −1
1 0

)
ttt (9.3)

Equations (9.1) and (9.2) describe a local property of C in terms that
refer extrinsically to rrr. Equation (9.3) is, on the other hand, intrinsic; given
{rrr(0), ttt(0)} and κ(s) one could reconstruct C. Adjusting the values of {rrr(0), ttt(0)}
—while preserving the structure of κ(s)—would lead to a different curve C ′

which is congruent to but not coincident with C, i.e., which is a Euclidean
transform of C.

Turning now from plane curves to space curves, let rrr(s) refer to a curve C
in R3. Then

ttt(s) = d
dsrrr(s) = unit tangent to C at s

and by differentation of ttt(s)···ttt(s) = 1 we have

d
dsttt(s) = κ(s) uuu(s)

where uuu(s) is a unit vector normal to ttt(s):

uuu(s)···ttt(s) = 0 and uuu(s)···uuu(s) = 1

uuu(s) describes the direction, and κ(s) the magnitude, of the local curvature
of C. Assume κ(s) (= 0 and define vvv(s) ≡ ttt(s)× uuu(s), which serves to complete
the construction of an orthonormal triad at each (non-straight) point s of C.
Elementary arguments6 lead to the conclusions that

d
dsuuu(s) = −κ(s) ttt(s) − τ(s) vvv(s) and d

dsvvv(s) = τ(s) uuu(s)

where τ(s) is the torsion of C at s. We arrive thus at

6 See my “Frenet-Serret formulae in higher dimension” (August 1998) and
the essay cited there.



Curvature 9

d
ds




ttt
uuu
vvv



 =




0 κ 0
−κ 0 −τ
0 τ 0








ttt
uuu
vvv



 (10)

which comprise the famous frenet-serret formulae.7 They serve in effect
to describe the rotation matrix R(s) that relates the {ttt, uuu, vvv}-frame at s to the
frame at s + ds.

If rrr(u, v) describes a surface Σ in R3 then rrr(u(s), v(s)) describes a curve C
inscribed on Σ. Thus does the theory of space curves acquire direct relevance
to the curvature theory of surfaces. Look in particular to the curves inscribed
on a neighborhood surrounding the (u, v)-point P on Σ by its intersection with
the planes that contain NNN(u, v), the local normal to Σ. For such an inscribed
curve we have8

ttt = rrrs = rrruus + rrrvvs

and therefore

ttts = rrruuu2
s + 2rrruvusvs + rrrvvv2

s + rrruuss + rrrvvss = κnNNN (11)

Dot NNN into this result. By NNN ···rrru = NNN ···rrrv = 0, NNN ···NNN = 1 and recalling from (2)
the definitions of the coefficients in the 2nd fundamental form obtain

κn = (rrruu···NNN)u2
s + 2(rrruv···NNN)usvs + (rrrvv···NNN)v2

s

= e(u, v)u2
s + 2f(u, v)usvs + g(u, v)v2

s

= e dudu + 2f dudv + g dvdv
ds2

= e dudu + 2f dudv + g dvdv
Edudu + 2F dudv + Gdvdv

(12)

= local curvature of such a “normal curve” Cn

I digress to remark that for an arbitrary curve C passing through P with
the same ttt the values of rrruuu2

s + 2rrruvusvs + rrrvvv2
s , rrru and rrrv remain the same

as they were for Cn; it is owing entirely to adjustments in the values of the
second derivatives uss and vss that (11) yields κuuu instead of κnNNN . Which is to
say, (11) assumes the forms

FFF + rrruuss + rrrvvss = κnNNN

FFF + rrruu′
ss + rrrvv′ss = κ uuu

7 These, when written out in component form (as they necessarily were
prior to the invention of vector algebra), are a set of nine equations, of which
Jean Frenet (1816–1900) discovered six in 1847 and Joseph Serret (1819–1885)
the remaining three in 1851. I would have expected these discoveries to have
occurred much earlier in the history of differential geometry, and to have been
known in particular to Gauss.

8 Here I follow Harry Lass, Vector and Tensor Analysis (1950), pages 74–78,
whose discussion I admire not for its formal elegance but for its conceptual
clarity and analytical swiftness.
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for curves of types Cn and C, respectively. Dotting NNN into those equations, and
noting that NNN and uuu are both unit vectors (normal to ttt), we obtain

NNN ···FFF + 0 = κn

NNN ···FFF + 0 = κ NNN ···uuu = κ cos θ

whence
κ = κn sec θ (13)

which is meusnier’s theorem, a result discovered by Jean Baptiste Meusnier
(1754–1793) in 1776, very early in the history of differential geometry.

From (12) we have

(κnE − e)du2 + 2(κnF − f)dudv + (κnG − g)dv2 = 0 (14.1)

which written
A(κn)(du

dv )2 + 2B(κn)du
dv + C(κn) = 0

assigns—for every given value of κn—two possible values to du
dv :

(
du
dv

)

±
= −B ±

√
B2 − AC
A

(14.2)

Twirl the normal plane about its NNN -axis, inscribing on Σ all possible Cn-curves
that pass through P . Their normal curvatures will range on {κn,min, κn,max}
and will assume their extremal values when the expressions on the right side of
(14.2) are coincident; i.e., when

B2 − AC = (κnF − f)2 − (κnE − e)(κnG − g)

= (F 2 − EG)κ2
n + (Eg − 2Ff + Ge)κn + (f2 − eg)

≡ aκ2
n + bκn + c = 0

The roots of this equation are

κ1 = −b +
√

b2 − 4ac
2a

κ2 = −b −
√

b2 − 4ac
2a

which are the “principal curvatures,” the Frenet-Serret curvatures of the
“principal directions” at the point P on Σ. The gaussian curvature at
P is, by definition,

K = κ1κ2 = c
a

= eg − f2

EG − F 2
(15.1)

and the mean curvature is

Km = 1
2 (κ1 + κ2) = − b

2a
= Eg − 2Ff + Ge

EG − F 2
(15.2)

as was asserted already at (8).



Curvature 11

The derivatives (du
dv )± described by (14.2) become coincident if

B2 − AC = (κnF − f)2 − (κnE − e)(κnG − g)
= (F 2 − EG)κ2

n + (Eg − 2Ff + Ge)κn + (f2 − eg) = 0 (16.1)

and are then given by
du
dv

= −B
A

= −κnF − f
κnE − e

(16.2)

From (16.1) it follows (non-obviously!) that

(Ef − Fe)(B2 − AB) = (Ef − Fe)(κnF − f)2

− (Eg − Ge)(κnF − f)(κnE − e)

+ (Fg − Gf)(κnE − e)2 = 0

which by (16.2), when divided by (κnE − e)2, becomes (compare (14.1))

(Ef − Fe)du2 + (Eg − Ge)dudv + (Fg − Gf)dv2 = 0 (16.3)

This is a single relation satisfied by both of the principal curves that pass
through the point P on Σ. The coefficients in (16.3) are reminiscent of but
distinct from those encountered as numerators in the Weingarten equations
(5), and as elements of the shape operator (7).

To equation (15.1)—which can be written

K = det H
det G

—Gauss (1827) gave the name “Theorema egregium” (remarkable theorem)
because the definition alludes to both fundamental forms (the 1st intrinsic, the
2nd extrinsic) yet describes an intrinsic property of surfaces in R3. Suppose
some infinitely flexible but absolutely inextensible film to have been cast in the
form Σ, on it to have been inscribed (arbitrarily) a {u, v} coordinate system and
the Gaussian curvature K at some designated point P to have been computed.
Isometric deformations Σ → Σ ′ (arbitrary bending or pinching, no stretching)
may—and typically will—alter the values of both κ1 and κ2 (and, indeed, also
of their sum; i.e., of the mean curvature at P ) but preserve the value of their
product K = κ1κ2.9

Because the Gaussian curvature K refers to an intrinsic local property of
Σ we expect it to be describable in terms that refer only to manifestly intrinsic
the local metric structure of the surface (1st fundamental form). The literature
provides several such formulae. Here I must be content not to derive but simply
to present a partial list of alternative metric constructions of K, and of some
of their close relatives.

9 Think of a ruled cylindar, where isometric deformations may alter κ1 (the
cross section) but preserve κ2 = 0. For an animated representation of an
isometric transformation more complicated than “pinching,” see “Theorema
Egregium” in Wikipedia. This site provides links to Engish translations of
Gauss’ original papers.
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Several of the formulae in question involve Christoffel symbols10 of the first
and second kinds:

Γmjk = 1
2

(
gmj,k + gmk,j − gjk,m

)
= Γmkj

Γ i
jk = gimΓmjk = 1

2gim
(
gmj,k + gmk,j − gjk,m

)
= Γ i

kj

In the n-dimensional case these are (reduced by symmetry from n3 to) 1
2n2(n+1)

in number, so for the 2-dimensional manifolds Σ of interest we confront a
population of twelve Christoffel symbols (six of each kind), of which we will in
fact need only the symbols of the second kind: in indexed notation

Γ 1
11 = 1

2g11g11,1 + g12g12,1 − 1
2g12g11,2

Γ 2
11 = 1

2g12g11,1 + g22g12,1 − 1
2g22g11,2

Γ 1
12 = Γ 1

21 = 1
2g11g11,2 + 1

2g12g22,1

Γ 2
12 = Γ 2

21 = 1
2g12g11,2 + 1

2g22g22,1

Γ 1
22 = 1

2g12g22,2 + g11g12,2 − 1
2g11g22,1

Γ 2
22 = 1

2g22g22,2 + g12g12,2 − 1
2g12g22,1






(17.1)

while in alphabetical notation11

Γ 1
11 = g–1

{
1
2GEu − FFu + 1

2FGv

}

Γ 2
11 = g–1

{
− 1

2FEu + EFu − 1
2EGv

}

Γ 1
12 = Γ 1

21 = g–1
{

1
2GEv − 1

2FGu

}

Γ 2
12 = Γ 2

21 = g–1
{
− 1

2FEv + 1
2EGu

}

Γ 1
22 = g–1

{
− 1

2FGv + GFv − 1
2GGu

}

Γ 2
22 = g–1

{
1
2EGv − FFv + 1

2FGu

}






(17.2)

In Riemannian geometry—which originated in the thesis (1854) of the
28-year-old Bernard Riemann (1826–1866), written at the request of Gauss—
the curvature of n-dimensional manifolds is most commonly described by an
object

Rρ
σµν = ∂µΓ ρ

νσ− ∂νΓ ρ
µσ+ Γ ρ

µλΓλ
νσ− Γ ρ

νλΓλ
µσ

that is often called the “Riemann curvature tensor” but, since almost no
equations appear in the text of Riemann’s thesis,12 is more properly called the

10 See again the Gauss equations on page 4.
11 Use

G =
(

g11 g12

g12 g22

)
=

(
E F
F G

)
, G–1 =

(
g11 g12

g12 g22

)
= g–1

(
G −F
−F E

)

where now g = det G = EG − F 2.
12 “On the hypotheses which lie at the bases of geometry.” An English

translation by W. K. Clifford is available on the web.
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riemann-christoffel tensor. So richly endowed with symmetry relations
(including the 3-member symmetry Rρσµν +Rρµνσ +Rρνσµ = 0 called the “first
Bianchi identity”) is Rρσµν that in n dimensions only

# = 1
12n2(n2 − 1)

of its n4 components are independent: as n ranges on {2, 3, 4, 5, . . .} # ranges on
{1, 6, 20, 50, . . .}. In the case n = 2 of immediate interest, only one component
is independent: all Rρσµν (indices ranging on {1, 2}) are either 0 or ±R1212.
Indeed, one in that case has

Rρσµν = K(gρµgσν − gρνgσµ)

from which it follows in particular that

R1212 = K(g11g22 − g12g21) =K · g

K = R1212

g
(18.1)

which serves quite elegantly to describe K in terms of the metric and its first
and second derivatives. One implication, by (15.1), is that

R1212 = ef − g2

(here g has reverted to its former meaning) provides an intrinsic metric
description of an expression derived from the extrinsic second fundamental form.
The formula (18) is, however, quite inefficient from a computational point of
view.13 Much more efficient are this intrinsic formula due to Liouville14

K = 1√
g

[(√
g

E
Γ 2

11

)

v
−

(√
g

E
Γ 2

12

)

u

]
(18.2)

and Brioschi’s formula
K = D1 − D2

g2
(18.3)

where

D1 = det




− 1

2Evv +Fuv − 1
2Guu

1
2Eu Fu− 1

2Ev

Fv − 1
2Gu E F

1
2Gu F G





D2 = det




0 1

2Ev
1
2Gu

1
2Ev E F
1
2Gu F G





13 Evaluation of g1ρ(Γ ρ
1λΓ

λ
22−Γ ρ

2λΓ
λ
12) entails summing 23 5-term products,

to which the evaluation of g1ρ(∂1Γ
ρ
22 − ∂2Γ

ρ
12) contributes an additional 30

4-term products. Great simplifications can be expected to occur, however, in
cases where significantly many of the Christoffel symbols either vanish or assume
simple functional forms.

14 Presented as equation (1.13) in Rogers & Schief. See also the “Gaussian
curvature” article in Worlfram World.
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Brioschi’s formula is written out in detail in the Worlfram World article cited
above. Somewhat simpler is the formula

K = − 1
4g2

∣∣∣∣∣∣

E Eu Ev

F Fu Fv

G Gu Gv

∣∣∣∣∣∣
− 1

2√g

{
∂
∂v

Ev − Fu√
g

− ∂
∂u

Fv − Gu√
g

}
(18.4)

that appears on page 20 in Chapter 4 of CFT (undated Classical Field Theory
notes). On coordinate patches where the coordinates are orthogonal (F = 0)
(18.4) reduces to

K = − 1
2
√

EG

(
∂
∂u

Gu√
EG

+ ∂
∂v

Ev√
EG

)
(18.5)

Finally, for surfaces Σ presented extrinsically as the graph of a function

z = Z(x, y)

one has (compare (9.1))

K =
ZxxZyy − Z 2

xy

(1 + Z 2
x + Z 2

y )2
(18.6)

part two

Differential Geometry of some Specific Surfaces

Sphere. We look first to the sphere because it provides the simplest possible
laboratory in which to illustrate the meanings of key concepts and to
demonstrate the accuracy and effectiveness of various formulae. The sphere
of radius ρ is, relative to a Cartesian frame in R3, defined implicitly by

x2 + y2 + z2 − ρ2 = 0

explicitly (upper and lower hemispheres separately) by

z = ±
√

ρ2 − x2 − y2

and parametrically (in the most common parameterization) by

rrr(u, v) =




ρ cos u cos v
ρ cos u sin v

ρ sin u





3D figures are constructed by the Mathematica commands
ContourPlot3D[etc.]
Plot3D[etc.,AspectRatio→Automatic]
ParametricPlot3D[etc.]

respectively. From

rrru =




−ρ sin u cos v
−ρ sin u sin v

ρ cos u



 , rrrv =




−ρ cos u sin v

ρ cos u cos v
ρ sin u





we obtain the coefficients of the 1st fundamental form (components of the
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metric matrix)
rrru···rrru = E = ρ2

rrru···rrrv = F = 0

rrrv···rrrv = G = ρ2 cos2 u

Major simplifications result from the circumstances that E is constant and
F = 0 (the coordinates are orthogonal, except at the poles). From Liouville’s
(18.5) it follows immediately that

K = 1/ρ2 : everywhere (all u, v)

Looking to (17.2) we find the Christoffel symbols to be given in this instance
by

Γ 1
11 = g–1

{
1
2GEu

}
= 0

Γ 2
11 = g–1

{
− 1

2EGv

}
= 0

Γ 1
12 = Γ 1

21 = g–1
{

1
2GEv

}
= 0

Γ 2
12 = Γ 2

21 = g–1
{

1
2EGu

}
= − tanu

Γ 1
22 = g–1

{
− 1

2GGu

}
= cos u sin u

Γ 2
22 = g–1

{
1
2EGv

}
= 0

It is for the sphere geometrically obvious that NNN is parallel to rrr, but the cross
product requires that we introduce a minus sign:

NNN(u, v) = − rrr(u, v)
|rrr(u, v)| = −




cos u cos v
cos u sin v

sin u





The coefficients of the 2st fundamental form are found therefore to be given by

rrruu···NNN = e = ρ

rrruv···NNN = f = 0

rrrvv···NNN = g = ρ cos2 u

which information places us (by (15)) in position to write

K = eg − f2

EG − F 2
= 1

ρ2

Km = Eg − 2Ff + Ge
EG − F 2

= 1
ρ

which by (9) give
κ1 = κ2 = Km ±

√
0 = 1

ρ

Recall that for plane curves one has

κ = 1
radius of curvature ρ

= 1
radius of osculating circle

For surfaces it make sense to speak of a “radius of the osculating sphere” only
when κ1 = κ2.



16 Differential geometry of surfaces in 3-space

The Gauss equations (4.2) have become

rrruu = ρNNN

rrruv = − tanu · rrrv

rrrvv = cos u sin u · rrru + ρ cos2 uNNN

which are found by computation to be correct, while the Weingarten equations
(5) have become

NNNu = e
E

rrru = − 1
ρ

rrru

NNNv = g
G

rrrv = − 1
ρ

rrrv

which are obvious corollaries of NNN = −rrr/ρ. Tedious computation15 confirms
finally that

R1212 = ρ2 cos2 u

which by (18.1) gives back K = 1/ρ2.

Surfaces of revolution, ruled surfaces & hyperboloids of a single sheet. We look
next to surfaces defined implicitly by

x2

a2
+ y2

b2
− z2

c2
= 1

the z-sections of which are elliptical

x2

a2
+ y2

b2
= 1 + z2

c2

and when a = b become circular

x2 + y2 = a2
(
1 + z2

c2

)
(19)

Hyperboloids of the latter type are surfaces of revolution (about the
z-axis), and admit of the natural parameterization

rrr(u, v) =




f(u) cos v
f(u) sin v

u



 with f(u) = a
(
1 + u2

c2

) 1
2

(20.1)

Alternatively (and just as naturally), we might write

rrr(u, v) =




u
v

(c/a)
√

u2 + v2 − a2



 (20.2)

15 See CFT pages 37–38. The MTW cited there is a reference to Misner,
Thorne & Wheeler, Gravitation (1973).
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Working first from (20.1), we find

E = rrru···rrru = a2u2 + c2u2 + c4

c2(u2 + c2)
F = rrru···rrrv = 0

G = rrrv···rrrv = a2(u2 + c2)
c2

Since F = 0 we can use (18.5) to compute

K = − c6

(a2u2 + c2u2 + c4)2
(21)

The unit normal is given by

NNN = rrru× rrrv

|rrru× rrrv|
= c2

a
√

a2u2 + c2u2 + c4)2




−a

√
1 + (u/c)2 cos v

−a
√

1 + (u/c)2 sin v
a2u/c2





so we have
e = rrruu···NNN = − ac2

(u2 + c2)
√

a2u2 + c2u2 + c4

f = rrruv···NNN = 0

g = rrrvv···NNN = a(u2 + c2)√
a2u2 + c2u2 + c4

Gauss’ construction (15.1) now gives

K = eg − f2

EG − F 2
= − c6

(a2u2 + c2u2 + c4)2

in precise agreement with (21).

From the fact that K is everywhere negative16 we infer that the principal
curvatures κ1 and κ2 are everywhere of opposite signs: every point on the
hyperboloid is a saddlepoint. This traces to the circumstance that the
eigenvalues of

H(u, v) =
(

e 0
0 g

)

are of opposite signs.

Because F = f = 0 and the remaining coefficients {E, G, e, g} are all
v-independent, the hyperboloidal Christoffel symbols (17.2) are subject in this
coordinate system to simplifications quite like those we encountered formerly
in the spherical case.

16 At the “throat” of the hyperboloid (i.e., at u = 0) the Gaussian curvature
K = −1/c2. Asymptotically it approaches 0 as [−a6/(a2 + c2)2] · u−4.
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The seemingly simpler parameterization (20.2) is found to lead to
expressions that are too complicated to be informative.17

moral: An ill-chosen parameterization can greatly complicate
things, and an orthogonal parameterization (when possible)
can be expected to purchase major simplifications.

A change of variables u → c sinhw brings (20.1) to the rather more attractive
form

rrr =




a cosh w cos v
a cosh w sin v

c sinhw





ruled surfaces are produced by waving straight lines (in this context
called “rules”) around in 3-space. This can be accomplished analytically by
letting ccc(u)—called the “directix”—trace a space curve C in 3-space, attaching
a “director” vector ddd(u) to each of the points of C and forming

rrr(u, v) = ccc(u) + vddd(u)

I illustrate the idea as it pertains to the hyperboloid of a single sheet, perhaps
the most familiar of all ruled surfaces. Let C be a circle of radius a, inscribed
on the xy -plane with center at the origin:

ccc(u) =




a cos u
a sin u

0





Let ddd(u) stand normal to ccc(u):

ddd(u) =




sin u

− cos u
k





Then

rrr(u, v) =




a cos u + v sin u
a sin u − v cos u

vk





and we have
x2

a2
+ y2

a2
= 1 + v2

a2
and 1 + z2

c2
= 1 + k2v2

c2

We recover (19) when we set
k = ±c/a

The hyperboloid of a single sheet is therefore (famously) doubly ruled:

rrr±(u, v) =




a cos u + v sin u
a sin u − v cos u

±cv/a



 (22.1)

Working from the ruled parameterization (22.1) we obtain

17 The parameterization (20.2) does, however, become tractable when one
sets a = c = 1.
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E = v2 + a2

F = −a

G = (a2 + c2)/a2

NNN = c√
(a2 + c2)v2 + a2c2




a cos u + v sin u
a sin u − v cos u

−(a/c)v





e = − c(v2 + a2)√
(a2 + c2)v2 + a2c2

f = ac√
(a2 + c2)v2 + a2c2

g = 0

The latter equation joins the circumstance that {E, F, G, e, f, g} are all
u-independent to simplify construction (17.2) of the Christoffel symbols, but
because F %= 0 (the coordinates are not orthogonal) Liouville’s (18.2) is not
applicable. But Gauss’ construction (15.1) supplies

K = − a4c2

((a2 + c2)v2 + a2c2)2

Reverting from the ruled parameterization (22.1+) in which z = cv/a to the
parameterization (20.1) in which z = u, we in the preceding equation make the
replacement v → au/c and recover precisely the former description (21) of K.

Ruled hyperboloids with elliptical throats are obtain by setting

rrr±(u, v) =




a cos u + va sin u
b sin u − vb cos u

±vc





which gives back (22.1) in the case b = a if in place of va one writes simply v.

Returning now to the parameterization (20.1)—which has been seen to give

K = − c6

(a2u2 + c2u2 + c4)2

—the mean curvature becomes

Km = Eg − 2Ff + Ge
EG − F 2

=
c2

(
(a2 + c2)u2 − (a2 − c2)c2

)

a(a2u2 + c2u2 + c4) 3
2

but—which is the point of this concluding remark—the principal curvatures

κ = Km ±
√

K2
m − K

are almost too complicated to write down, even though the hyperboloid is in
other respects such a simple surface.
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Conjugate directions, asymptotic directions and curves. The 1st fundamental
form gives rise to a positive-definite symmetric matrix G that describes the local
metric structure of the surface Σ. The equation Gxxx = λxxx serves to associate a
pair of orthogonal tangent vectors with every point P of Σ. The 2nd fundamental
form, which refers to the normal curvature (variation of NNN) at P , gives rise on
the other hand—as was remarked already on page 2—to a symmetric matrix H
for which det H can assume either sign, depending upon the local value of the
Gaussian curvature K. For surfaces with everywhere-negative curvature it is
everywhere the case that det H < 0 (eigenvalues of opposite sign).

Given a tangent vector xxx at P , the equation (yyy, Hxxx) = 0 serves to associate
with xxx a vector (orthogonal to xxx) that will be said to be “conjugate” to xxx.
Suppose, for example, we have arranged to have

H =
(

λ1 0
0 λ2

)

and agreed (by suspending any interest in normalization) to write

xxx =
(

x
1

)
, yyy =

(
y
1

)

Then
(yyy, Hxxx) = λ1xy + λ2 = 0 =⇒ y = − λ2

xλ1

The tangent vector xxx is said to be “self conjugate” (or “asymptotic”) if yyy = xxx,
which entails

x = ±
√
−λ2/λ1 : real if and only if K < 0

The implication is that at points P on surfaces Σ of negative curvature there
are typically two asymptotic directions.

Curves C inscribed on Σ that are endowed with the property that all the
tangents are asymptotic are called are called asymptotic curves. To illustrate
this notion I return again to the hyperboloid (20.1), where

H =
(

e 0
0 g

)
with






e = − ac2

(u2 + c2)
√

a2u2 + c2u2 + c4

g = a(u2 + c2)√
a2u2 + c2u2 + c4

The differential tangent vector
(

du
dv

)
will be asymptotic if and only if

du
dv

= ±
√
−g/e = ±u2 + c2

c

which entails

u(v) = ±c tan(v − v0) ⇐⇒ v(u) = ± arctan(u/c) + v0 (23)

where v0 is a constant of integration. Returning with this information to (20.1)
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and noting that

f(u) = a
(
1 + u2

c2

) 1
2

= a sec[arctan(u/c)]

we have

rrr =




a sec[arctan(u/c)] cos v
a sec[arctan(u/c)] sin v

u





which by (23) and a pair of trigonometric identities becomes

rrr∓ =




a cos v0 ∓ u · (a/c) sin v0

a sin v0 ± u · (a/c) cos v0

u





This—remarkably, and quite unexpectedly—is seen to present the hyperboloid
as a ruled surface: to recover (22.1) replace v0 → u, u → ∓cv/a. The asymptotic
curves are in this instance rectilinear rules. Less trivial examples of aymptotic
curves will be forthcoming.

The hexenhut. In looking to the seldom encountered surface defined implicitly
by the cubic equation

x3 + y3 + z3 − 3xyz = 1 (24)

I am allowing myself a sentimental indulgence, for it was (see again page 1) this
oddly but aptly named surface that led me to undertake this excursion into the
theory of surfaces.

Graphic experimentation shows the hexenhut (24) to be a surface of
revolution with axis coincident with the principal diagonal {0, 0, 0} → {1, 1, 1}
of the unit cube. The surface is easier to comprehend (and to work with) if one
rotates18




x
y
z



 −→




X
Y
Z



 = R




x
y
z



 : R =





2√
6

−1√
6

−1√
6

0 1√
2

−1√
2

1√
3

1√
3

1√
3





to a different orthogonal frame in 3-space. In {X, Y, Z} variables (24) reads

Z(X2 + Y 2) = 2
3
√

3
≡ α2 = 0.3849

which clearly describes a surface of revolution about the Z-axis. We have the
immediate parameterization

rrr =




f(u) cos v
f(u) sin v

u



 with f(u) = α/
√

u (25)

18 I am indebted here to Ahmed Sebbar. Mathematica confirms that RTR = I .
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From (25) we obtain

E = 1 + α2

4u3

F = 0

G = α2

u

e = − 3α2

2u
√

4u3α2 + α4

f = 0

g = 2uα2
√

4u3α2 + α4

The Gaussian curvature is given therefore (since F = f = 0) by

K = eg
EG

= − 12u4

(4u2 + α2)2
(26)

while (18.5) reduces (since all coefficients are v-independent) to

K = − 1
2
√

EG

(
Gu√
EG

)

u
= same thing

The curvature K(u) is 0 at u = 0 (i.e., at the infinitely remote almost-flat
brim of the hexenhut), drops to −1 at u = ( 1

2α2) 1
3 = 1/

√
3 and approaches 0

as u → ∞ (i.e., as one approaches the ever-more-nearly-cylindrical tip of the
hexenhut).

For asymptotic curves we have again (because f = 0) the differential
equation du/dv = ±

√
−g/e, or more conveniently

dv
du

= ±
√
−e/g = ±βu–1 : β =

√
3

2

which gives
v(u) = ±β log(u/u0)

where u0 is a constant of integration. Asymptotic curves inscribed on the
hexenhut acquire thus the description

rrr±(u) =




f(u) cos[β log(u/u0)]

±f(u) sin[β log(u/u0)]
u



 with f(u) = α/
√

u (27)

where it is the value of u0 that distinguishes one such curve from another; i.e.,
that assigns a “name” to each individual asymptotic curve of specified type.
The hexenhut emerges as the envelope of the u0 -parameterized family of such
curves (either type, or both).

The Christoffel symbols associated with the {u, v}-parameterization (25)
of the hexenhut simplify for precisely the reasons stated already at the bottom
of page 17.
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The pseudosphere. “Coordinate geometry” or “analytic geometry,” the fusion
of geometry and calculus made possible by Descartes’ introduction of a
coordinate system onto the Euclidean plane, gave rise in the 16th Century
to a flurry of activity relating to the properties of plane curves and of curves
(evolute, involute, pedal, etc.) derived from curves.19

The tractrix, or “curve of pursuit,” was introduced by Claude Perrault
(1670), and its properties studied by Newton (1676) and Huygens (1692). In
Lockwood19 it is discussed (Chapter 13, pages 118–124) in conjunction with
the catenary,20 its evolute (envelope of its normals: here enters the theory of
Legendre transformations), of which it is therefore the involute.

The “curve of pursuit” acquires its name from the following consideration:
A string of length ρ is looped around the z-axis at {0, 0} and attached at its
other end to a sled at {ρ, 0}. As the loop ascends the z-axis the dragged sled
traces a curve z(x) with the property that the length of the tangent at {x, z(x)}
to the z-intercept is ρ. Working from a sketch, one has

dz
dx

= −
√

ρ2 − x2

x
with z(ρ) = 0

of which the solution is

z(x) = ρ log
ρ +

√
ρ2 − x2

x
−

√
ρ2 − x2

= ρ arcsech(x/ρ) −
√

ρ2 − x2

By a change of variables
x = ρ sechu

we obtain z = ρu − ρtanhu

Revolution about the z-axis generates a surface

rrr(u, v) =




ρ sechu cos v
ρ sechu sin v
ρu−ρtanhu



 (28)

that when plotted looks to be a “hexenhut with a vengence.” It might plausibly
be called a “tractrixoid,” but was in fact called a “tractricold” until given
the name pseudosphere by Beltrami in 1868. Elementary properties of the

19 See E. H. Lockwood’s wonderful A Book of Curves (1961), which is now
available on the web as a free pdf download.

20 Architectural applications of the catenary were discussed by Robert Hooke
in the 1670s, and its mathematical properties had been worked out by Leibniz,
Huygens and Johann Bernouli by 1691. It arose as a refinement of Galileo’s
observation that the profile of a hanging chain is approximately parabolic,
and was given its name—again in an architectural connection—by Thomas
Jefferson, in a letter to Thomas Payne.
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pseudosphere had been worked out by Huygens in 1693, who found the surface
area to be that of a sphere of radius ρ, and the enclosed volume to be half
that of such a sphere. But recognition of the most interesting properties of the
pseudospherical surface Σ had to await the development of differential geometry
in the 19th Century, and it is to some of those that we now turn.

Working from (28) we find

E = ρ2 tanh2u

F = 0

G = ρ2 sech2 u





(29.1)

NNN = −




tanhu cos v
tanhu sin v

sechu





e = −ρ sechu tanhu

f = 0
g = +ρ sechu tanhu





(29.2)

Whether we return with the three relations (29.1) to Liouville’s (18.5) or with
all six relations (29) to Gauss’ (15.5), we obtain in either event

K = − 1
2
√

EG

(
Gu√
EG

)

u
= eg

EG
= − 1

ρ2
(30)

which exposes the most salient property of the pseudosphere (and accounts for
its name): it has at all points the same negative curvature.

We note in passing that in this parameterization of the pseudosphere the
Christoffel symbols (17.2) simplify for precisely the reason remarked already on
pages 17 and 22.

Looking now to the pseudospheric asymptotic curves, we have

dv
du

= ±
√
−g/e = ±1 =⇒ v = u0 ± u

where u0 is again a constant of integration. The following equations serve
therefore to inscribe on the pseudosphere two populations of asymptotic curves:

rrr+(u) =




ρ sechu cos(u0 + u)
ρ sechu sin(u0 + u)

ρu−ρtanhu



 , rrr−(u) =




ρ sechu cos(u0 − u)
ρ sechu sin(u0 − u)

ρu−ρtanhu





A unified “asymptotic parameterization of the pseudosphere” is achieved if
one introduces new parameters {x, y}—not to be confused with Cartesian
coordinates—by

u = x + y

v = x − y

Then (28) becomes
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rrr(x, y) =




ρ sech(x + y) cos(x − y)
ρ sech(x + y) sin(x − y)
ρ(x + y)−ρtanh(x + y)



 (31)

which for y fixed and x variable produces a y -paramterized family of rrr+ curves,
and for x fixed and y variable produces an x-paramterized family of rrr− curves.

We do now a non-obvious thing: working from (31), we look to

ω(x, y) =
{

angle subtended by the asymptotic
curves that intersect at the {x, y}

Noting that the tangent vectors

RRRx = ρ–1∂xrrr

RRRy = ρ–1∂yrrr

are unit vectors, we have

ω(x, y) = arccos(RRRx···RRRy) = arccos
[
1 − 2sech2(x + y)

]

= arccos
[
1 − 4

1 + cosh(2x + 2y)

]

We are informed by Mathematica21 that, as was first noticed by Edmond Bour22
(1862), we have on one hand

ωxy(x, y) = 2sech(x + y)tanh(x + y)

and on the other hand

sin ω = 2sech(x + y)tanh(x + y) (32)

Thus did the sine-gordon equation23

∂x∂y ω = sinω (33)

enter the literature of mathematics, fully half a century before it became central
to the physical theory of solitons.

I present now a sneeky, indirect alternative derivation of (33). It proceeds
from Liouville’s formula (18.2), which was recommended on the ground that

21 Mathematica has contributed indispensably to all the work reported in the
present essay. One can only admire the patience (and accuracy) of the pioneers
who were obliged to do all the heavy calculation by hand.

22 The diffential geometry of the pseudosphere was pioneered by Ferdinand
Minding (1806–1885), whose ideas were taken up and cultivated by Bour
(1832–1866), whose work stimulated that of (among others) Eugenio Beltrami
(1835–1900) and Albert Bäcklund (1845–1922).

23 See the companion essay, “Some remarks concerning the sine-Gordon
equation” (November, 2015).
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it draws only upon the local metric structure of a surface (information written
into the 1st fundamental form), and which I repeat:

K = 1√
g

[(√
g

E
Γ 2

11

)

y
−

(√
g

E
Γ 2

12

)

x

]

Working from (31)—which insofar as it alludes to the asymptotic direction
concept is a child of the 2nd fundamental form—we find

E = ρ2

F = ρ2
[
1 − 2 sech2(x + y)

]

G = ρ2

which by (17.2) entail
Γ 2

11 = g–1EFx

Γ 2
12 = 0

since Ex = Ey = Gx = Gy = 0. So Liouville’s formula has assumed the simple
form

K = 1√
g

(√
g

E
Γ 2

11

)

y
(34)

But g = EG − F 2 = 4ρ4 sech2(x + y) tanh2(x + y) so

√
g = 2ρ2 sech(x + y) tanh(x + y)

Γ 2
11 = coth(x + y)

}
=⇒

√
g

E
Γ 2

11 = 2sech(x + y)

and (34) reads

K = 1
2ρ2 sech(x + y) tanh(x + y)

∂y

(
2sech(x + y)

)
= − 1

ρ2

It is gratifying (if certainly no surprise) that Liouville’s formula has returned
this familiar result. What is surprising is the news that its success hinges in
this instance on the elementary statement

∂y

(
2sech(x + y)

)
= −2 sech(x + y) tanh(x + y) (35)

The sine-Gordon equation now follows from the non-obvious observations that

2sech(x + y) = ∂x

[
4 arctan

(
tanhx + y

2

)]

sin
[
4 arctan

(
tanhx + y

2

)]
= 4ex+y e2(x+y) − 1

(e2(x+y) + 1)2
= 2sech(x + y)tanh(x + y)

which bring (35) to the form

∂x∂yΩ = − sin Ω where Ω(x, y) = 4 arctan
(
tanhx + y

2

)
(36)
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We recover (33) by observing (graphically) that

arccos
[
1 − 2sech2x

]
=

{
4 arctan

(
tanh1

2x
)

+ π : x < 0
π − 4 arctan

(
tanh1

2x
)

: x > 0

Equation (33) is unchanged when the sign of Ω is reversed; the additive π terms
are invisible to the ∂∂ on the left, but reverse the sign of the sine on the right.

Since x and y enter into Ω(x, y)—as also into ω(x, y)—only through their
sum, we have ∂x∂x = ∂x∂y = ∂y∂y; it was by arbitrary selection that we
elected to write ∂x∂y in (33) and (36).24 This situation is, however, atypical
of sine-Gordon theory, and does not pertain to (for example) the function

ω(x, y) = 4 arctan
(
eax+ 1

a y
)

encountered at (8.1) in the companion essay cited on page 25, for which one
has

ωxy = sinω but ωxx − a4ωyy = 0

Concluding comments. Since it has best served my purpose—which has been
to prepare myself for deeper penetration into the material presented in the
several-times-mentioned monograph by Rogers & Schief—and anyway conforms
most comfortably to my admittedly old-fashioned way of thinking about
mathematics, I offer no apology for the fact that I have adhered here to classical
methods and notations, and have provided no hint of the high level of
abstraction with which the topics treated here tend to be treated in the modern
literature, and even in Wikipedia articles.25 I do, however, apologize to my
reader (should ever I enjoy the company of one) for the oppressive degree of
detail with which I have treated some topics; the simple fact is that I have
written not for the edification of a reader, but to provide myself with a record
of my thought as I worked through issues that initially confused me.

In the course of the work I have become aware of some of the many often
excellent differential geometric course notes that mathematicians scattered
about the world have generously placed on the web. And I have been led to
become the proud owner of a copy of the 1st edition of Luther Eisenhart’s
Treatise on the Differential Geometry of Curves and Surfaces (1909).

24 It would appear, therefore, that Bour gave birth in 1862 to triplets, of
which only one can claim ancestry to the sine-Gordon equation; one would like
to have access to the paper in which (if ever he did) he recognized the special
importance of that particular child.

25 An intermediate way station on the road to abstraction is marked by an
account of “curvature” that was communicated to me by Thomas Wieting.
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Figure Captions

Figure 1. Hyperboloid of a Single Sheet . The figure derives from the parametric
representation (20.1), and portrays (as to all these hyperboloidal figures) a “unit
hyperboloid” (a = b = c = 1).

Figure 2. Ruled hyperboloid. The figure derives from the rrr+ of(22.1), with
u = 2π

37 n : n = 1, 2, . . . , 38, which produces the ! family of rules. The hyperboloid
is bounded by coaxial hoops of radius R and vertical separation D.
Counterrotation of the hoops (upper hoop in the ! direction) brings the surface
to conical form; subsequent rotation in the " direction brings the surface
through all possible (centrally circular) figures until it becomes cylindrical,
then reverses sense and passes again through all figures until it is again conical.
The minimal surface (soapfilm) supported by such a pair of hoops is (when
D/R falls within a certain interval) known to be a catenoid of revolution, to
which one of the hyperboloids provides a best approximation. One is reminded
of Galileo’s observation that the curve of a hanging chain is “approximately
parabolic,” an observation that soon led others to the discovery that it is in fact
a catenary. One wonders why Galileo did not say “approximately hyperbolic.”
It is established in the text that hyperboloidal “rules” are “asymptotic curves.”

Figure 3. Hexenhut in Natural Position. The figure derives from the implicit
equation x3 + y3 + z3 − 3xyz = 1.

Figure 4. Reoriented Hexenhut. The figure, derived from (25), displays the
hexenhut as a surface of revolution about a reoriented Z-axis.

Figure 5. Hexenhut with Inscribed Asymptotic Curves. The figure, derived from
this variant of the rrr+ of (27)

rrr+(u) =




f(u) cos[β log(u) + 2π

25 n]
f(u) sin[β log(u) + 2π

25 n]
u



 with
{

f(u) = α/
√

u
n = 1, 2, . . . , 26

displays the hexenhut inscribed with one of its two families of asymptotic curves.

Figure 6. Complete Pseudosphere. The figure, derived from the parametric
representation (28), displays both halves of of the pseudosphere, which—unlike
the hexenhut—has a finite diameter, and encloses a finite volume.

Figure 7. Upper Hemisphere of a Pseudosphere. References to the pseudosphere
areusually references to only half of the complete surface, a“hemipseudosphere”?

Figure 8. Pseudosphere with Inscribed Asymptotic Curves. The figure, derived
from (31), presents the surface as the envelope of asymptotic curves, of which
Mathematica has elected to display only some. Note that the angle subtended
by intersecting asymptotes—to which Bour directed our attention—decreases
as monotonically one ascends, from π at the base to 0 as z → ∞.
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